Practical Applications of in Vivo and ex Vivo MRI in Toxicologic Pathology Using a Novel High-performance Compact MRI System.

نویسندگان

  • Catherine Tempel-Brami
  • Yael S Schiffenbauer
  • Abraham Nyska
  • Nati Ezov
  • Itai Spector
  • Rinat Abramovitch
  • Robert R Maronpot
چکیده

Magnetic resonance imaging (MRI) is widely used in preclinical research and drug development and is a powerful noninvasive method for assessment of phenotypes and therapeutic efficacy in murine models of disease. In vivo MRI provides an opportunity for longitudinal evaluation of tissue changes and phenotypic expression in experimental animal models. Ex vivo MRI of fixed samples permits a thorough examination of multiple digital slices while leaving the specimen intact for subsequent conventional hematoxylin and eosin (H&E) histology. With the advent of new compact MRI systems that are designed to operate in most conventional labs without the cost, complexity, and infrastructure needs of conventional MRI systems, the possibility of MRI becoming a practical modality is now viable. The purpose of this study was to investigate the capabilities of a new compact, high-performance MRI platform (M2™; Aspect Imaging, Israel) as it relates to preclinical toxicology studies. This overview will provide examples of major organ system pathologies with an emphasis on how compact MRI can serve as an important adjunct to conventional pathology by nondestructively providing 3-dimensional (3-D) digital data sets, detailed morphological insights, and quantitative information. Comparative data using compact MRI for both in vivo and ex vivo are provided as well as validation using conventional H&E.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Noninvasive Stem Cell Labeling Using USPIO Technique and their Detection with MRI

Background: To date, several imaging techniques to track stem cells are used such as positron emission tomography (PET), single photon emission computed tomography (SPECT), Bioluminescence imaging (BLI), fluorescence imaging, CT scan and magnetic resonance imaging (MRI). Although, overall sensitivity of MRI compared to SPECT and Bioluminescence techniques are lower, but due to high spatial reso...

متن کامل

In Vivo Tracing of Human Umbilical Cord Matrix Stem Cells Useing MRI

Purpose: Human umbilical cord matrix (UCM) (Wharton jelly) stem cells labeling are tracking by MRI. Materials and Methods: After 48 hours incubation with USPIO human umbilical cord matrix (UCM) stem cells were labeled with USPIO by the means of receptor-mediated endocytosis. Prussian blue staining and Atomic absorption spectroscopy were performed to identify and show the iron oxide nanoparticle...

متن کامل

A Novel Biocompatible Nanoprobe Based on Lipoproteins for Breast Cancer Cell Imaging

Objective(s): Contrast-enhanced magnetic resonance imaging (MRI) of breast cancer provides valuable data on the disease state of patients. Biocompatible nanoprobes are expected to play a pivotal role in medical diagnosis in the future owing to their prominent advantages. The present study aimed to introduce a novel biocompatible nanoprobe based on lipoproteins for breast cancer cell imaging.<br...

متن کامل

Compact Magnetic Resonance Imaging Systems-Novel Cost-Effective Tools for Preclinical Drug Safety and Efficacy Evaluation.

Practical magnetic resonance imaging for use in investigative and preclinical toxicology studies is now feasible. Newly developed, self-containing imaging systems provide an efficient and cost-effective means to rapidly obtain in vivo and ex vivo magnetic resonance imaging images to improve how we perform toxicology and toxicologic pathology.

متن کامل

A Method for Whole Brain Ex Vivo Magnetic Resonance Imaging with Minimal Susceptibility Artifacts

Magnetic resonance imaging (MRI) is a non-destructive technique that is capable of localizing pathologies and assessing other anatomical features (e.g., tissue volume, microstructure, and white matter connectivity) in postmortem, ex vivo human brains. However, when brains are removed from the skull and cerebrospinal fluid (i.e., their normal in vivo magnetic environment), air bubbles and air-ti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Toxicologic pathology

دوره 43 5  شماره 

صفحات  -

تاریخ انتشار 2015